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Abstract

Purpose

This study aims to compare two surgical techniques, the standard Vein-to-Artery and the

newer Artery-to-Vein (Radial Artery Deviation And Reimplantation; RADAR), for enhancing

the success of Arterio-Venous Fistula maturation in end-stage renal disease patients. The

impact of diseases like anemia, diabetes, hypertension, and chronic kidney disease were

considered. The goals are to advance Arterio-Venous Fistula (AVF) surgery, improve

patient outcomes, and contribute to evidence-based surgical guidelines.

Methods

Fluid-structure interaction modeling was employed to investigate how hemodynamic and

mechanical stresses impact arteriovenous fistula maturation, with a particular focus on the

role of wall shear stress in determining maturation outcomes. The critical threshold for ves-

sel injury was identified as wall shear stress values exceeding 35 N/m2, while stenosis for-

mation was projected to occur at levels below 1 N/m2. This work introduced a novel

approach by considering disease-related factors, including blood viscosity (anemia), and

vessel elasticity (diabetes, hypertension, and chronic kidney diseases), which directly influ-

ence hemodynamics and the generation of wall shear stress. Furthermore, the model was

designed to incorporate varying thicknesses and elasticities for both the vein and artery,

accurately representing authentic vascular anatomy.
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Results

The RADAR technique has demonstrated superior performance compared to the standard

technique by providing appropriate wall shear stress in critical regions and minimizing the

risk of wall damage. Its use of a thicker vessel also reduces the risk of vessel injury, making

it particularly effective for patients with Chronic Kidney Disease (CKD), hypertension, ane-

mia, and diabetes, ensuring optimal blood flow and fewer complications. However, there are

minor concerns about stenosis formation in hypertension and anemia cases, which could be

mitigated by adjusting the anastomosis angle to be lower than 30˚.

Conclusion

Diabetes and hypertension have significant physiological effects that increase the risks

associated with arteriovenous fistula maturation. The anemic condition resulting from CKD

may help reduce vessel injury but raises concerns about potential stenosis formation.

Despite these co-morbidities, the RADAR technique has demonstrated its ability to induce

more favorable hemodynamic changes, promoting arteriovenous fistula maturation.

Introduction

Hemodialysis is one of the mandatory treatments in end stage renal disease (ERSD). This pro-

cedure requires creating a vascular access and surgical creation of Arterio-Venous Fistula

(AVF) is a common option [1]. This operation demands a post-operative period for fistula

maturation before becoming a valid route for vascular access. Overall, the success rate of AVF

maturation is approximately 50–65% [2, 3]. Therefore, failure of maturation is not uncommon

and this complication usually results in the negative outcomes that lead morbidity and mortal-

ity [4]. There are various causes, including site of the AVF [5]. The most common site of fail-

ure is at the radial artery and cephalic vein [1, 4]. Regardless the site of AVF, the common

mechanism is related to a response to the increased hemodynamic force of both the feeding

artery and draining vein that leads to stenosis obstructing the fistula’s pathway [6, 7].

Hemodynamic and mechanical stresses are critical factors affecting AVF maturation. The

former creates a turbulent flow that results in insufficient Wall Shear Stress (WSS), leading to

stenosis. The latter occurs because of excessive pressure and consequently causes thickening of

the vessel. The combination of both increases the risk of vessel stenosis and failure of fistula

maturation [8]. Thus, a thorough understanding of the interaction between hemodynamics

and mechanical structure, particularly WSS, is crucial to enhance outcomes for surgical crea-

tion of AVF.

The creation of an AVF can be achieved using either standard end vein-to-side artery anas-

tomosis or a later approach of end artery-to-side vein anastomosis, known as Radial Artery

Deviation And Reimplantation (RADAR) [9]. On one hand, the RADAR technique has been

reported to improve rate of maturation and stenosis in comparison to that of the former [9],

since it establishes a smoother flow pattern and as a result reduces the associated risks of high

flow rates [10]. On the other hand, it requires sacrifice of the flow of radial artery distal to the

AVF. Selection of these techniques depends on various factors, including patient characteris-

tics, surgeon expertise, and individual considerations such as the presence of existing diseases

that can influence hemodynamics.
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Basically, some co-morbidities can influence blood vessel elasticity and subsequently

affect AVF outcomes. These includes poor elasticity in diabetes (stiffer artery [11] and vein

[12–14]) and hemodynamics and WSS changes in hypertension [15] that can lead to matu-

ration failure [16–19]. For Chronic Kidney Disease (CKD), it can affect arterial elasticity

per se [11] and it often associated with diabetes, a primary cause of kidney failure in 60% of

dialysis patients [20, 21]. Understanding the effects of these diseases on AVF is therefore

crucial. In addition, anemia is another physiologic consequence of CKD [22] that worsened

along the disease progression. The decreased red blood cells (RBCs) volume and concentra-

tion influence blood viscosity [23, 24] that is a critical factor in WSS generation affecting

AVF maturation [25–28].

A careful evaluation of these related factors is necessary when considering the optimal tech-

nique for AVF creation. Thus, this study takes the effects of vessel elasticity resulted from

CKD, diabetes, and/or hypertension, as well as the shear-dependent viscosity associated with

anemia into account for investigating their consequences in AVF maturation and proposing a

numerical comparison of the two techniques by considering non-Newtonian blood flow and

mechanical deformation of vessels. To analyze incompressible non-Newtonian blood flow

within deformed vessels, a fluid-structure interaction model [29–31] employing the Navier-

Stokes equations with a turbulent model is utilized. This advanced modeling approach incor-

porates different thicknesses and elasticities between the vein and artery, closely mimicking

actual vascular anatomy and properties compared to previous works. This advanced modeling

approach has demonstrated success in predicting AVF behavior, preventing maturation failure

[32], and contributing to a better understanding of vascular biology, ultimately leading to

improved solutions for AVF creation [33].

The objectives of this study are as follows: (1) to enhance our understanding of AVF surgery

and develop a surgical approach that minimizes the occurrence of fistula immaturity, (2) to

incorporate the blood properties specific to CKD patients to obtain more realistic results, (3)

to provide surgical recommendations for patients with diabetes, hypertension, and anemia

based on hemodynamics and mechanical engineering principles, and (4) to compare the effi-

cacy of different surgical techniques from an engineering standpoint.

Formulation of the problem

AVF creation results in high blood flow velocity that is diverted into the curved vessel, leading

to abnormal hemodynamics in the region, including turbulent flow conditions and abnormal

WSS [34–37]. Excessive WSS, ranging from 35–40 N/m2, can cause injury to the vessel wall

within an hour of exposure [38]. Conversely, too low WSS, below 1 N/m2, has been shown to

be associated with the development of stenosis formation from the WSS normalization pro-

cess, which can contribute to AVF failure [6, 39–41]. Diagrammatic of AVF failure is demon-

strated in Fig 1.

Furthermore, disturbed flow, characterized by low and reciprocating flow, may develop in

zones of the AVF, indicating the sites of future stenoses [6]. Vessel stenosis formation tends to

occur in areas of disturbed flow [32, 42, 43]. To reduce the rate of AVF immaturity from steno-

sis formation, hemodynamics should be optimized by creating more laminar flow transition at

the curved vessel region as much as possible [44].

Physical model

The schematic of the 3D AVF model, diameters, and AVF techniques; standard (V-A) and

RADAR (A-V) approaches, are depicted in Fig 2. The numerical model was simulated using

finite element analysis via COMSOL Multiphysics software. The mechanical properties of the
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Fig 1. Diagrammatic of arteriovenous fistulas failure.

https://doi.org/10.1371/journal.pone.0296631.g001

Fig 2. The schematic of the arteriovenous fistula models [45].

https://doi.org/10.1371/journal.pone.0296631.g002
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blood, venous, and arterial vessels with different diseases used in the analysis, are provided in

Table 1.

Methodology

In this study, fluid structure interaction is employed for analysis of 3D blood flow in elastic fis-

tula. The blood is considered as fluid domain, and vessels (vein and artery) are considered as

structural domain. The fluid-structure interfaces are expressed by acting forces between fluid

and structure.

To simplify the problem, the following assumptions are made:

1. The blood flow inside AVF behaves as low-Reynolds turbulent flow.

2. The blood is assumed to be isotropic, homogeneous, non-Newtonian and incompressible

fluid.

3. Deformations of fistula are small enough to be described by linear elasticity

4. The study is assumed to be time-independent.

This research undertaken herein was conducted without any involvement of human par-

ticipants, ensuring adherence to ethical research practices. The medical data utilized in this

study originates solely from peer-reviewed and established research within the relevant

field.

Blood flow analysis in fluid domain

The Wilcox low-Reynolds turbulence model [50–52] is utilized to simulate and predict turbu-

lent arterial blood flow, as it is suitable for scenarios where laminar and turbulent flows coexist

within certain areas of the arteries [52–54]. The set of equations that form the Wilcox low-Rey-

nolds incompressible Navier-Stokes equation for turbulent flow include the continuity equa-

tion (Eq 1), which ensures mass conservation, the conservation of momentum in fluid flow

(Eq 2), accounting for the forces acting on the fluid, the transport equation for turbulent

kinetic energy, k (Eq 3), and the transport equation for the specific dissipation rate of turbu-

lence, ω (Eq 4).

In OFluid:

@ub

@x
þ
@vb
@y
þ
@wb

@z
¼ 0 ð1Þ

Table 1. Mechanical properties of blood vessel.

Parameter Artery

(Thickness 1 mm [46])

Vein

(Thickness 0.5 mm [46])

Blood

Young’s modulus (kPa) Healthy 100 [11] 25 [19] -

CKD 130

Diabetes 139.1

Hypertension 91.8

Density (kg/m3) 1075 [47] 1056 [47] 1060 [47]

Poisson’s ratio (-) 0.46 [48] 0.48 [49] -

Viscosity (Pa.s) - - μeff

https://doi.org/10.1371/journal.pone.0296631.t001
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The turbulent viscosity is,

mt ¼ cmrb
k
o

ð5Þ

The generation rate of turbulence kinetic energy is as follows,

G ¼ mt
@ub

@x
þ
@vb
@y
þ
@wb

@z

� �
@ub

@x
þ
@vb
@y
þ
@wb

@z

� �

ð6Þ

where ρb is the blood density (kg/m3), ub, vb, wb represents the velocity component of blood in

the direction of x, y, and z (m/s), p is the pressure (Pa), k is the turbulent kinetic energy (m2/

s2), ω is the specific dissipation rate of turbulence (1/s), μ is the blood dynamic viscosity (Pa.s),

μt is the turbulent viscosity (Pa.s), G is the generation of turbulence kinetic energy through

mechanisms of velocity gradients (m2/s3).

The values of the Wilcox model constants are as follows [52],

c1 = 0.555, c2 = 0.8333, cμ = 0.09, σk = 2, σω = 2

The dynamic viscosity for non-Newtonian fluid in this study, is described by nonlinear

function of shear rate of Carreau model [24–28, 54–56] as given;

m ¼ m1 þ m0 � m1ð Þ½1þ ðl _gÞ
a
�
n� 1
a ð7Þ

where μ0 is denoted as zero shear rate viscosity (kg/m.s), μ1 is the viscosity at the infinite

shear rate (kg/m.s), λ is characteristic relaxation time, _g is scalar shear rate, n is flow index and

a is dimensionless parameter describing the transition region between zero-shear-rate region

and the power-law region. The Carreau model parameters for blood with different volume of

red blood cells are indicated in Table 2. The non-linear values of shear-dependent blood vis-

cosity of different blood characteristics are demonstrated.
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Boundary conditions. The vessel walls are held under non-slip conditions. At the

entrance of the fistula, laminar flow is assumed with very low values of turbulence parameters,

represented by the k−ω model, where k is set to 0.0001 and ω to 0.45 [52]. Meanwhile, at the

outlet, fully developed flow is considered.

For standard technique (V-A), the inflow at the arterial inlet is applied with 998 ml/min

[59–65] under normal circumstance, 2500 ml/min [66–69] for excessive high flow (hyperten-

sion). The outflows are applied with a flow distribution of 8% and 92% towards the arterial

outlet and venous outlet, respectively.

For RADAR technique (A-V), the inflow at arterial inlet is applied as the same amount as

standard technique. The inflow at venous inlet is applied with 50 ml/min [70] and flow out at

venous outlet with pressure 0 Pa. The flow rates in this study are referred to the value of radio-

cephalic AVF.

This study has a limitation where the outlet pressure is assumed to be 0 Pa, simplifying the

model. While this assumption might not notably influence the overall result of WSS, it could

affect the dynamics of blood flow within the fistula. Therefore, considering precise values, such

as an outlet pressure of 5 mmHg, can significantly enhance the accuracy of predictions. Hence,

it is recommended that future studies utilize more precise boundary conditions to better repre-

sent real-world scenarios.

Mechanical deformation analysis in structural domain

The displacement of structure in for vessel domain is described in this section. The equations

of momentum in the structural domain are as follow [71];

In OSolid:

rvuv ¼
@sxx

@x
þ
@txy

@y
þ
@txz
@z
þ rvfF

rvvv ¼
@txy

@x
þ
@syy

@y
þ
@tyz

@z
þ rvfF ð8Þ

rvwv ¼
@txz
@x
þ
@tyz

@y
þ
@szz

@z
þrvfF

Where uv, vv, wv represent the displacement of vessel(mm), ρv is vessel density (kg/m3), σ
is the stress (N/m2), τ is wall shear stress (N/m2), and fF is applied body force from fluid (N).

The equilibrium equations for solid mechanics, written in a Cartesian coordinate system,

Table 2. Carreau model parameters for blood at 37˚C with different proportion of red blood cells.

the proportion of Red Blood Cells μ0

(kg/m.s)

λ n μ1
(kg/m.s)

Reference

45% (Normal) 0.056 3.313 0.356 0.00345 [54, 57, 58]

15% 0.0273 3.314 0.354 0.001 [58]

5% 0.0233 3.313 0.352 0.002 [58]

https://doi.org/10.1371/journal.pone.0296631.t002
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are [72, 73]:
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@y
þ
@szz

@z
¼ 0

The stress–strain relationship (Eq (10)) and the strain-displacement relationship (Eq (11))

are as follows [72, 73]:

εxx ¼
1

E
sxx � nðsyy þ szzÞ
h i

εyy ¼
1

E
syy � nðsxx þ szzÞ
h i

εzz ¼
1

E
szz � nðsxx þ syyÞ
h i

ð10Þ

εxy ¼ sxyð1þ nÞ=E

εxz ¼ sxzð1þ nÞ=E

εyz ¼ syzð1þ nÞ=E

εxx ¼
@uv

@x
; εyy ¼

@vv
@y

; εzz ¼
@wv

@z

εxy ¼
1

2

@uv

@y
þ
@vv
@z

� �

ð11Þ

εxz ¼
1

2

@uv

@z
þ
@wv

@x

� �

ε ¼
1

2

@vv
@z
þ
@wv

@y

� �

where ε denotes the mechanical strain, E is Young’s modulus (Pa), ν is the Poisson’s ratio. The

mechanical strain is calculated by Young’s modulus (Pa) and the Poisson’s ratio, where dem-

onstrate in Table 1.

Boundary conditions. To predict future stenosis in a fistula, a crucial consideration is the

primary generation of WSS specifically occurring at the anastomosis area. The dynamic inter-

action between blood flow and the vessel wall within the fistula significantly influences the

WSS, potentially leading to future stenosis. Consequently, the boundary conditions applied to

the surfaces of the anastomosis angle are defined as free boundary conditions, allowing
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movement. Meanwhile, the remaining surfaces are designated as fixed boundary conditions,

effectively constraining any movement of the structure, and thereby simulating the behavior of

surrounding tissues.

Fluid-structure interaction

To satisfy the blood flow in elastic vessel analysis, the deformable moving mesh is used. The

fluid structural interaction is employed at the blood-vessel interface as follows [71, 74],

Gfs ¼ Of þ Os ð12Þ

Fluid solver of displacement from solid,

Of : fF ¼ FðdSÞ ð13Þ

Solid solver of force from fluid,

Os : ds ¼ SðfFÞ ð14Þ

The conditions on the fluid-solid interior boundary can be described as follow,

½ub; vb;wb�f ¼ ½uv; vv;wv�s at Gfs

ss ¼ � sf at Gfs

Verification of the model

This model was simulated using a reasonable number of elements, as shown in Fig 3(A). A

mesh element count of 600,000 was employed in this study. Furthermore, the accuracy of our

model was verified by comparing the simulation results with relevant literature [45]. Specifi-

cally, pressure drops were compared between the simulation data and experimental data, as

depicted in Fig 3(B). The results clearly demonstrate the accuracy of our model, as evidenced

by the close match between the findings of this study and the previous work.

Results

AVF Thrombus is a significant risk factor for patients with CKD, and it is often associated

with hypertension, anemia, and diabetes [75]. These diseases can impact blood vessel elasticity

and affect blood flow patterns and WSS. In this study, two techniques, standard and improved

RADAR, are compared. The simulation of WSS helps predict potential damage to the vessel

wall at critical region A (WSS > 35 N/m2) and the formation of stenosis at critical region B

(WSS < 1 N/m2).

Effect of vessel elasticity

Effect of diabetes disease on artery and vein stiffness. The combination of CKD and dia-

betes causes increased stiffness in both artery and vein [11–14] that leads to changes in blood

flow patterns and interactions with the vessel wall (Fig 4(A)). In standard AVF model, veins

with higher stiffness experience less deformation and slower velocity at the anastomosis joint

connection that result in higher WSS at critical region A (Figs 4(B) and 5; lines 1 and 5). How-

ever, the flow becomes faster after the curvature of anastomosis that leading to lower WSS at

critical region B (Fig 4(C)).
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Effect of hypertension on blood flow rate and artery stiffness. Hypertension leads to

excessive blood flow rate (2500 ml/min) and increased stiffness in both artery and vein. In

standard AVF model, the additional flow provides a higher attacking force on the less

deformed vessel wall at the anastomosis area resulting in potentiation of WSS elevation over

that from increased stiffness alone. This can potentially cause injury to the inner vessel wall,

especially in critical region A (Fig 5(B) and 5(C); lines 1 and 4, and Fig 6(B) and 6(C)). How-

ever, the generated turbulent flow pattern at critical region B due to faster flow (Fig 6(A)) is

shown to be more favorable than that in CKD without hypertension. It results in a smaller area

of insufficient WSS at critical region B, as faster flow can increase WSS generation (Fig 6(D)).

Effect of blood property

Effect of anemia disease on blood viscosity. Anemia is a condition that occurs when a

patient has a lower number of RBCs. This characteristic of blood is associated with the non-

Newtonian fluid property, where viscosity varies depending on the proportion of RBCs

(Table 2). The RBC levels of 45%, 15%, and 5% are considered normal [54, 57, 58], lower than

usual [58], and insufficient RBCs conditions [58], respectively. When the RBC level is at 45%,

the blood tends to have the highest viscosity, resulting in slower blood flow velocity (Fig 5(A);

lines 1–3). Consequently, it encounters higher resistance within the blood vessels, leading to

greater vessel deformation and higher WSS (Fig 5(B) and 5(C); lines 1–3, and Fig 7(A)–7(C)).

Fig 3. (a) Mesh convergence curve of the model (b) Validation result compared between this study and Canneyt et al.,

2010 [45].

https://doi.org/10.1371/journal.pone.0296631.g003
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In the standard AVF model, the most disturbed blood flow, fastest velocity, and lowest WSS

are observed in red blood cells at 15% (Fig 5; lines 1–3 and Fig 7(A)–7(C)).

Effect of surgical technique

Comparison between standard AVF and RADAR techniques. The RADAR technique

generates a smoother flow along the anastomosis and produces less turbulence within the fis-

tula compared to the standard technique (Fig 8(A)). This smoother flow results in a lower

velocity and reduces the force attacking the vessel wall, resulting in less deformation (Fig 8

(B)). As a consequence, the RADAR technique leads to significantly lower WSS levels at critical

region A and slightly lower WSS at critical region B (Fig 8(C) and 8(D)). Notably, the highest

WSS is generated in the area of blood inflow to the anastomosis for both techniques, which is

considered as critical region A.

Effect of hypertension, and anemia diseases on vessels stiffness and blood flow phenom-

ena. In high-risk cases of AVF maturity failure, such as hypertension and anemia, where the

veins and arteries become stiffer, blood viscosity significantly decreases, and blood flow rate

increases (2500 ml/min). The results demonstrate that the RADAR technique generates a more

favorable flow compared to the standard technique. Only a small turbulence is created under the

main flow from the artery (Fig 9(A)). The anastomosis area, which is most affected by the blood

flow, experiences less deformation in the RADAR technique (Fig 9(B)), resulting in a significantly

Fig 4. The comparison of fistula with CKD and fistula with CKD & diabetes disease (a) Total displacement of vessels and blood flow

velocity (b) Maximum wall shear stress at critical region A (c) Minimum wall shear stress at critical region B.

https://doi.org/10.1371/journal.pone.0296631.g004
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smaller WSS at critical region A (Fig 9(C)). However, the presence of small turbulence can lead to

a small area of insufficient WSS beneath the flow at the anastomosis (Fig 9(D)).

Effect of hypertension, anemia and diabetes diseases on vessels stiffness and blood flow

phenomena. Diabetes is often associated with CKD, hypertension, and anemia, leading to

increased stiffness in venous vessels. In the standard technique, where the anastomosis is made

by vein, there is less deformation compared to the case without diabetes (Figs 9(B) and 10(B)).

This results in an altered blood flow pattern (Figs 9(A) and 10(A)) and higher WSS at critical

region A, which is more noticeable in the standard technique due to the vein is role as the

anastomosis part in this technique (Figs 9(C) and 10(C)).

When comparing the cases with and without additional diseases using the two surgical

techniques, the RADAR technique consistently generates less WSS at critical region A (Figs 8

(D), 9(D) and 10(D)). However, the WSS value at critical region B remains approximately the

same for both techniques (Fig 11(A) and 11(B)).

Discussion

Diabetes and hypertension diseases

The presence of vessel elasticity plays a crucial role in assessing the risk of complications related to

maturity failure in patients with diabetes and hypertension. In diabetes, changes in vessel stiffness

Fig 5. Standard technique (V-A); Blood flow velocity, vessel total displacement and WSS between of fistula with

different diseases.

https://doi.org/10.1371/journal.pone.0296631.g005
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can lead to altered blood flow patterns and varying levels of WSS, which contribute to a slightly

higher chance of stenosis development. In patients with hypertension, the effects of vessel stiffness

are further amplified by the excessive blood flow rate. This combination results in excessively

unfavorable WSS at the anastomosis, causing a significant damage to the vessel walls and posing a

greater risk of complications such as fistula immaturity. However, the likelihood of stenosis for-

mation from insufficient WSS is relatively lower compared to cases without hypertension.

Anemia disease

Accelerated blood flow exerts a stronger force on vessel walls, causing increased impact and

leading to the emergence of turbulent flow through enhanced blood reflection. In cases of

Fig 6. The comparison of fistula with CKD and fistula with CKD & hypertension disease (a) 2D total displacement of

vessels and blood flow velocity (b) 3D total displacement of vessels (c) Maximum wall shear stress at critical region A (d)

Minimum wall shear stress at critical region B.

https://doi.org/10.1371/journal.pone.0296631.g006
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anemia, characterized by lower red blood cell counts, blood becomes less viscous, contributing

to faster blood velocity and a decrease in WSS generation. This occurrence potentially reduce

damage to vessel walls, especially at critical area A, where minimizing WSS is crucial for main-

taining vascular health. However, a complication arises at critical area B due to turbulent flow,

resulting in insufficient WSS, where maximizing WSS is necessary to prevent potential future

stenosis resulting from its deficiency. Consequently, a lower number of RBCs may increase the

possibility of stenosis formation in the future.

In a non-Newtonian fluid like blood, the flow behavior is influenced by multiple factors,

including the concentration of RBCs, which adds complexity to the actual blood flow charac-

teristics. The interaction of these factors can give rise to unexpected velocity patterns, where

the blood velocity may not strictly follow the order of RBC levels. Previous studies have also

noted this non-linear relationship between RBC concentration and blood flow velocity [58,

76]. Additionally, factors such as temperature may contribute to RBCs aggregate size and

blood viscosity [58]. Therefore, these factors collectively explain the occurrence of unexpected

flow phenomena observed when RBCs are present at a concentration of 15%.

In clinical scenarios, sub-normal maintenance in anemia treatment would be crucial to pro-

vide a favorable WSS to critical region A to minimize risk of vessel injury. However, too low

concentration of RBCs may negatively affect the critical region B as previously mentioned.

Furthermore, there is currently a lack of comprehensive information regarding the behavior of

blood flow related to anemia, particularly concerning the viscosity of blood flow using a non-

Newtonian model, which exhibits a non-linear pattern. Therefore, conducting additional stud-

ies is essential to enhance our understanding of how anemia-related non-Newtonian blood

flow influences WSS in AVF.

Fig 7. The comparison of total displacement, blood flow velocity and WSS at critical regions, between different red blood cells proportion of (a) 45% (b) 15%

(c) 5%.

https://doi.org/10.1371/journal.pone.0296631.g007
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Standard and RADAR techniques

The RADAR technique outperforms the standard technique in multiple aspects. It increases

WSS at critical region B, where insufficient WSS poses a risk, while reducing WSS at critical

region A to minimize the risk of wall damage. Moreover, due to its thicker vessel, the RADAR

technique lowers the chance of vessel injury compared to the standard technique. However, it

is essential to consider that the smaller area of insufficient WSS (critical region B) in RADAR

may still present a risk of future stenosis formation.

When considering the combination of CKD, hypertension, and anemia, the RADAR tech-

nique proves to be superior in terms of blood flow and WSS generation. It facilitates a

smoother flow and lowers WSS at critical region A, which is essential in reducing the risk of

complications. Notably, even in the presence of diabetes, the RADAR technique maintains its

Fig 8. The comparison of standard and RADAR techniques of fistula with CKD (a) 2D total displacement of vessels and blood flow

velocity (b) 3D total displacement of vessels (c) Maximum WSS at critical region A (d) Minimum WSS at critical region B.

https://doi.org/10.1371/journal.pone.0296631.g008
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superior performance and remains unaffected by the stiffer veins associated with diabetes. On

the other hand, the standard technique yields poorer results, as the use of the vein for anasto-

mosis can be negatively impacted by the presence of stiffer veins in diabetic patients. The

RADAR technique proves to be more effective in managing the complexities of CKD, hyper-

tension, and anemia, while also remaining resilient in the presence of diabetes-related stiffer

veins. This makes RADAR a favorable choice for optimizing blood flow and minimizing

potential complications.

Fig 9. The comparison of standard and RADAR techniques of fistula with CKD, hypertension, and anemia diseases (a) 2D total

displacement of vessels and blood flow velocity (b) 3D total displacement of vessels (c) Maximum WSS at critical region A (d) Minimum

WSS at critical region B.

https://doi.org/10.1371/journal.pone.0296631.g009

PLOS ONE The modeling of arteriovenous fistula between two techniques: Anemia, hypertension, and diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0296631 January 16, 2024 16 / 22

https://doi.org/10.1371/journal.pone.0296631.g009
https://doi.org/10.1371/journal.pone.0296631


Regarding the possibility of stenosis formation in cases with hypertension and anemia, the

RADAR technique shows two small areas where the risk of stenosis may be higher over time.

It is possible that this risk can be mitigated by adjusting the anastomosis angle to be smaller

than 30˚ for smoother flow and better WSS generation, but further studies are required to con-

firm this prospect. Although RADAR technique possesses a positive change in hemodynamic

for AVF maturation, the risk of sacrificing the distal flow should be taken into the account to

minimize other complications related to the decreased blood flow.

Fig 10. The comparison of standard and RADAR techniques of fistula with CKD, hypertension, anemia, and diabetes diseases (a) 2D

total displacement of vessels and blood flow velocity (b) 3D total displacement of vessels (c) Maximum WSS at critical region A (d)

Minimum WSS at critical region B.

https://doi.org/10.1371/journal.pone.0296631.g010
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Conclusion

The physiologic consequences of diabetes and hypertension pose a significant risk for AVF

maturation failure. In contrast, the anemic condition resulting from CKD may help reduce

vessel injury but raises concerns about potential stenosis formation. However, due to the com-

plexity of viscosity-dependent blood behavior associated with anemia, further studies are

needed to better understand its influence on AVF maturation. Additionally, diseases related to

blood properties, such as low-density lipoprotein, could significantly affect surgical outcomes

[77] and should be considered in future research. Despite the presence of these co-morbidities,

the RADAR technique has demonstrated its efficacy in providing more favorable hemody-

namic alterations for AVF maturation.
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